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Outline

1 Lecture 1 : Brownian motion, martingales and stochastic integrals.
2 Lecture 2 : Introduction to Malliavin calculus.
3 Lecture 3 : Stein’s method for normal approximations.
4 Lecture 4 : Applications to functionals of the fractional Brownian

motion.
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Multivariate normal distribution

A random vector X = (X1, . . . ,Xn) has the multivariate normal
distribution N(µ,Σ), if its characteristic function is

E
(

ei〈u,X〉
)

= exp
(

i〈u, µ〉 − 1
2

uT Σu
)
, u ∈ Rn,

where µ ∈ Rn and Σ is an n × n symmetric and nonnegative definite
matrix.

µ = (E(X1), . . . ,E(Xn))

Σij = Cov(Xi ,Xj )

If X has the N(µ,Σ) distribution, then Y = AX + b, where A is an m × n
matrix and b ∈ Rm, has the N(Aµ+ b,AΣAT ) distribution.
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If Σ is nonsingular, then X has a density given by

f (x) = (2π)−
n
2 (det Σ)−

1
2 exp

(
−1

2
(x − µ)T Σ−1(x − µ)

)
.
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Stochastic processes

A stochastic process X = {Xt , t ≥ 0} is a family of random variables

Xt : Ω→ R

defined on a probability space (Ω,F ,P).

The probabilities on Rn, n ≥ 1,

Pt1,...,tn = P ◦ (Xt1 , . . . ,Xtn )−1

where 0 ≤ t1 < · · · < tn, are called the finite-dimensional marginal
distributions of the process X .

For every ω ∈ Ω, the mapping

t → Xt (ω)

is called a trajectory of the process X .
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Theorem (Kolmogorov’s extension theorem)
Consider a family of probability measures

{Pt1,...,tn , 0 ≤ t1 < · · · < tn,n ≥ 1}

such that :

(i) Pt1,...,tn is a probability on Rn.

(ii) (Consistency condition) : If {tk1 < · · · < tkm} ⊂ {t1 < · · · < tn}, then
Ptk1 ,...,tkm

is the marginal of Pt1,...,tn , corresponding to the indexes
k1, . . . , km.

Then, there exists a stochastic process {Xt , t ≥ 0} defined in some
probability space (Ω,F ,P), which has the family {Pt1,...,tn} as
finite-dimensional marginal distributions.

Take Ω as the set of all functions ω : [0,∞)→ R, F the σ-algebra
generated by cylindrical sets, extend the probability from cylindrical sets
to F , and set Xt (ω) = ω(t).
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Gaussian processes

X = {Xt , t ≥ 0} is called Gaussian if all its finite-dimensional marginal
distributions are multivariate normal.

The law of a Gaussian process is determined by the mean function
E(Xt ) and the covariance function

Cov(Xt ,Xs) = E((Xt − E(Xt ))(Xs − E(Xs))).

Suppose µ : R+ → R, and Γ : R+ × R+ → R is symmetric and
nonnegative definite :

n∑
i,j=1

Γ(ti , tj )aiaj ≥ 0, ∀ ti ≥ 0, ai ∈ R.

Then there exists a Gaussian process with mean µ and covariance
function Γ.
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Equivalent processes

Two processes, X , Y are equivalent (or X is a version of Y ) if for all
t ≥ 0,

P{Xt = Yt} = 1.

Two equivalent processes may have quite different trajectories. For
example, the processes Xt = 0 for all t ≥ 0 and

Yt =

{
0 if ξ 6= t
1 if ξ = t

where ξ ≥ 0 is a continuous random variable, are equivalent, because
P(ξ = t) = 0, but their trajectories are different.

Two processes X and Y are said to be indistinguishable if

Xt (ω) = Yt (ω)

for all t ≥ 0 and for all ω ∈ Ω∗, with P(Ω∗) = 1.

Two equivalent processes with right-continuous trajectories are
indistinguishable.
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Regularity of trajectories

Theorem (Kolmogorov’s continuity theorem)
Suppose that X = {Xt , t ∈ [0,T ]} satisfies

E(|Xt − Xs|β) ≤ K |t − s|1+α,

for all s, t ∈ [0,T ], and for some constants β, α > 0. Then, there exists a
version X̃ of X such that, if γ < α/β,

|X̃t − X̃s| ≤ Gγ |t − s|γ

for all s, t ∈ [0,T ], where Gγ is a random variable.

The trajectories of X̃ are Hölder continuous of order γ for any γ < α/β.
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Brownian motion

A stochastic process B = {Bt , t ≥ 0} is called a Brownian motion if :
i) B0 = 0 almost surely.
ii) Independent increments : For all 0 ≤ t1 < · · · < tn the increments

Btn − Btn−1 , . . . ,Bt2 − Bt1 , are independent random variables.
iii) If 0 ≤ s < t , the increment Bt − Bs has the normal distribution

N(0, t − s).
iv) With probability one, t → Bt (ω) is continuous.
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Proposition
Properties i), ii), iii) are equivalent to :

(?) B is a Gaussian process with mean zero and covariance

Γ(s, t) = min(s, t).

Proof :

a) Suppose i), i) and iii). The distribution of (Bt1 , . . . ,Btn ), for
0 < t1 < · · · < tn, is normal, because this vector is a linear
transformation of

(
Bt1 ,Bt2 − Bt1 , . . . ,Btn − Btn−1

)
which has independent

and normal components.
The mean is zero, and for s < t , the covariance is

E(BsBt ) = E(Bs(Bt − Bs + Bs)) = E(Bs(Bt − Bs)) + E(B2
s ) = s.

b) The converse is also easy to show. �
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Construction of the Brownian motion

1. The function Γ(s, t) = min(s, t) is symmetric and nonnegative definite
because it can be written as

min(s, t) =

∫ ∞
0

1[0,s](r)1[0,t](r)dr ,

so

n∑
i,j=1

aiaj min(ti , tj ) =
n∑

i,j=1

aiaj

∫ ∞
0

1[0,ti ](r)1[0,tj ](r)dr

=

∫ ∞
0

[
n∑

i=1

ai1[0,ti ](r)

]2

dr ≥ 0.

Therefore, by Kolmogorov’s extension theorem there exists a Gaussian
process B with zero mean and covariance function min(s, t).
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2. The process B satisfies

E
[
(Bt − Bs)2k

]
=

(2k)!

2k k !
(t − s)k , s ≤ t

for any k ≥ 1, because the distribution of Bt − Bs is N(0, t − s).

3. Therefore, by the Kolmogorov’s continuity theorem, there exist a version
B̃ of B, such that B̃ has Hölder continuous trajectories of order γ for any
γ < k−1

2k on any interval [0,T ]. This implies that the paths are γ-Hölder
on [0,T ] for any γ < 1

2 and for any T > 0.
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Brownian motion and random walk

Let {ξk ,1 ≤ k ≤ n} be independent and identically distributed random
variables with zero mean and variance one.

Define Sn(0) = 0,

Sn(
kT
n

) =
√

T
ξ1 + · · ·+ ξk√

n
, k = 1, . . . ,n

and extend Sn(t) to t ∈ [0,T ] by linear interpolation.

Donsker Invariance Principle : The law of the random walk Sn on
C([0,T ]) converges to the Wiener measure, which is the law of the
Brownian motion. That is, that for any continuous and bounded function
ϕ : C([0,T ])→ R,

E(ϕ(Sn))
n→∞−→ E(ϕ(B)),
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Simulations of Brownian motion
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Basic properties

1. Selfsimilarity :
For any a > 0, the process {a− 1

2 Bat , t ≥ 0} is also a Brownian motion.
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2. For any h > 0, the process {Bt+h − Bh, t ≥ 0} is a Brownian motion.

3. The process {−Bt , t ≥ 0} is a Brownian motion.

4. The process

Xt =

{
tB1/t , t > 0
0, t = 0

is a Brownian motion.
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Quadratic variation

Fix a time interval [0, t ] and consider a partition

π = {0 = t0 < t1 < · · · < tn = t}.

Define ∆tk = tk − tk−1, ∆Bk = Btk − Btk−1 and |π| = max1≤k≤n ∆tk .

Proposition
The following convergence holds in L2 :

lim
|π|→0

n∑
k=1

(∆Bk )2 = t .

We can say that (∆Bt )
2 ∼ ∆t
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Proof : Set ξk = (∆Bk )2 −∆tk . The random variables ξk are independent and
centered. Thus,

E

( n∑
k=1

(∆Bk )2 − t

)2
 = E

( n∑
k=1

ξk

)2
 =

n∑
k=1

E
[
ξ2

k
]

=
n∑

k=1

[
3 (∆tk )2 − 2 (∆tk )2 + (∆tk )2

]
= 2

n∑
k=1

(∆tk )2 ≤ 2t |π| |π|→0−→ 0. �

Exercise : Using the Borel-Cantelli lemma, show that if {πn} is a sequence of
partitions of [0, t ] such that

∑
n |πn| <∞, then

∑n
k=1 (∆Bk )2 converges

almost surely to t .
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Infinite total variation

Define

Vt = sup
π

n∑
k=1

|∆Bk |

Then,
P(Vt =∞) = 1.

In fact, using the continuity of the trajectories of the Brownian motion, we
have, on the set V <∞,

n∑
k=1

(∆Bk )2 ≤ sup
k
|∆Bk |

(
n∑

k=1

|∆Bk |

)
≤ V sup

k
|∆Bk |

|π|→0−→ 0.

Then, V <∞ contradicts the fact that
∑n

k=1 (∆Bk )2 converges in L2 to t
as |π| → 0.
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Martingales

We assume that {Ft , t ≥ 0} is an increasing family of σ-fields, contained
in F (filtration).

Definition
An adapted process M = {Mt , t ≥ 0} is called a martingale with respect to Ft
if

(i) For all t ≥ 0, E(|Mt |) <∞.

(ii) For each s ≤ t , E(Mt |Fs) = Ms.

Property (ii) can also be written as :

E(Mt −Ms|Fs) = 0.
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Examples :

Let Bt be a Brownian motion and let Ft be the filtration generated by Bt :

Ft = σ{Bs,0 ≤ s ≤ t}.

Then, the processes

M(1)
t = Bt

M(2)
t = B2

t − t

M(3)
t = exp(aBt −

a2t
2

)

where a ∈ R, are martingales.
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1. Bt is a martingale because

E(Bt − Bs|Fs) = E(Bt − Bs) = 0.

2. For B2
t − t , we can write, using the properties of the conditional

expectation, for s < t

E(B2
t |Fs) = E((Bt − Bs + Bs)2 |Fs)

= E((Bt − Bs )2 |Fs) + 2E((Bt − Bs ) Bs|Fs)

+E(B2
s |Fs)

= E (Bt − Bs )2 + 2BsE((Bt − Bs ) |Fs) + B2
s

= t − s + B2
s .

3. Finally, for exp(aBt − a2t
2 ) we have

E(eaBt− a2 t
2 |Fs) = eaBs E(ea(Bt−Bs)− a2 t

2 |Fs)

= eaBs E(ea(Bt−Bs)− a2 t
2 )

= eaBs e
a2(t−s)

2 − a2 t
2 = eaBs− a2s

2 .
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Doob’s maximal inequalities

Theorem
Let {Mt , t ∈ [0,T ]} be a continuous martingale such that E(|MT |p) <∞ for
some p ≥ 1. Then, for all λ > 0 we have

P

(
sup

0≤t≤T
|Mt | > λ

)
≤ 1
λp E(|MT |p). (1)

If p > 1, then

E

(
sup

0≤t≤T
|Mt |p

)
≤
(

p
p − 1

)p

E(|MT |p). (2)
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The Wiener integral

The integral of a step function ϕt =
∑m−1

j=0 aj1(tj ,tj+1](t) ∈ E with respect to
a Brownian motion B on [0,T ] is defined by∫ T

0
ϕtdBt =

m−1∑
j=0

aj (Btj+1 − Btj )

The mapping ϕ→
∫ T

0 ϕtdBt from E ⊂ L2([0,T ]) to L2(Ω) is linear and
isometric :

E

(∫ T

0
ϕtdBt

)2
 =

m−1∑
j=0

a2
j (tj+1 − tj ) =

∫ T

0
ϕ2

t dt = ‖ϕ‖2
L2([0,T ]).

E is a dense subspace of L2([0,T ]). Therefore, the mapping

ϕ→ B(ϕ) =:

∫ T

0
ϕtdBt

can be extended to a linear isometry between L2([0,T ]) and the
Gaussian subspace of L2(Ω) spanned by {Bt , t ∈ [0,T ]}.
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Progressively measurable processes

Let Ft be the σ-field generated by the random variables {Bs,0 ≤ s ≤ t} and
the sets of probability zero.

Definition
We say that u = {ut , t ∈ [0,T ]} is progressively measurable if for any
t ∈ [0,T ], the restriction of u to Ω× [0, t ] is Ft × B([0, t ])-measurable.

Let P be the σ-field of sets A ⊂ Ω× [0,T ] such that 1A is progressively
measurable.

We denote by L2
T (P) the Hilbert space L2(Ω× [0,T ],P,P × `), where ` is

the Lebesgue measure, equipped with the norm

‖u‖2 = E

(∫ T

0
u2

s ds

)
.
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Stochastic integrals

u = {ut , t ∈ [0,T ]} is a simple process if

ut =
n−1∑
j=0

φj1(tj ,tj+1](t),

where 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn = T and φj are Ftj -measurable random
variables such that E(φ2

j ) <∞.

We define the stochastic integral of u as

I(u) :=

∫ T

0
utdBt =

n−1∑
j=0

φj
(
Btj+1 − Btj

)
.

David Nualart (Kansas University) Sept. 2016 27 / 45



Stochastic integrals

u = {ut , t ∈ [0,T ]} is a simple process if

ut =
n−1∑
j=0

φj1(tj ,tj+1](t),

where 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn = T and φj are Ftj -measurable random
variables such that E(φ2

j ) <∞.

We define the stochastic integral of u as

I(u) :=

∫ T

0
utdBt =

n−1∑
j=0

φj
(
Btj+1 − Btj

)
.

David Nualart (Kansas University) Sept. 2016 27 / 45



Properties of the stochastic integral of simple processes

(i) Linearity : ∫ T

0
(aut + bvt ) dBt = a

∫ T

0
utdBt + b

∫ T

0
vtdBt .

(ii) Zero mean :

E

(∫ T

0
utdBt

)
= 0.

In fact,

E

(∫ T

0
utdBt

)
=

n−1∑
j=0

E
[
φj
(
Btj+1 − Btj

)]
=

n−1∑
j=0

E [φj ]E [Btj+1 − Btj ] = 0.
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(iii) Isometry property :

E

(∫ T

0
utdBt

)2
 = E

(∫ T

0
u2

t dt

)
.

Proof : Set ∆Bj = Btj+1 − Btj . Then

E
(
φiφj ∆Bi ∆Bj

)
=

{
0 if i 6= j

E
(
φ2

j

)
(tj+1 − tj ) if i = j

because if i < j the random variables φiφj ∆Bi and ∆Bj are independent and if
i = j the random variables φ2

i and (∆Bi )
2 are independent. So, we obtain

E

(∫ T

0
utdBt

)2
 =

n−1∑
i,j=0

E
(
φiφj ∆Bi ∆Bj

)
=

n−1∑
i=0

E
(
φ2

i
)

(ti+1 − ti )

= E

(∫ T

0
u2

t dt

)
. �
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Proposition

The space E of simple processes is dense in L2
T (P).

Proof :
Use the approximating sequence

u(n)
t =

n−1∑
j=1

(
n
T

∫ tj

tj−1

usds

)
1(tj ,tj+1](t),

where tj = jT
n . �
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Proposition
The stochastic integral can be extended to a linear isometry :

I : L2
T (P)→ L2(Ω).

Proof : This follows form the fact that E is dense in L2
T (P). �.

The stochastic integral has the following properties :

E [I(u)] = 0

and

E [I(u)I(v)] = E
(∫ ∞

0
usvsds

)
.
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Example

∫ T

0
BtdBt =

1
2

B2
T −

1
2

T

Proof : The process Bt being continuous in mean square, we can choose as
approximating sequence

u(n)
t =

n∑
j=1

Btj−11(tj−1,tj ](t),

where tj = jT
n , and we obtain∫ T

0
BtdBt = lim

n→∞

n∑
j=1

Btj−1

(
Btj − Btj−1

)
=

1
2

lim
n→∞

n∑
j=1

(
B2

tj − B2
tj−1

)
− 1

2
lim

n→∞

n∑
j=1

(
Btj − Btj−1

)2

=
1
2

B2
T −

1
2

T .
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Indefinite stochastic integrals

For u ∈ L2
T (P), we define the stochastic process

∫ t

0
usdBs :=

∫ T

0
us1[0,t](s)dBs , t ∈ [0,T ]

Proposition
Let u ∈ L2

T (P). The indefinite stochastic integral

Mt =

∫ t

0
usdBs

is a square integrable martingale with respect to the filtration Ft and admits a
continuous version.
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Itô’s formula

Itô’s stochastic integral does not follow the chain rule of classical
calculus.

Example : ∫ t

0
BsdBs =

1
2

B2
t −

t
2
,

whereas if xt is a differentiable function such that x0 = 0,∫ t

0
xsdxs =

∫ t

0
xsx ′sds =

1
2

x2
t .

In differential form
d(B2

t ) = 2BtdBt + dt ,

and dt comes from (dBt )
2 ∼ dt and the Taylor expansion up to the

second order.
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The stochastic integral can be extended (using convergence in
probability) to progressively measurable processes satisfying∫ T

0 u2
s ds <∞ a.s. Denote the class of those processes by L2

T ,loc(P).

Denote by L1
T ,loc(P) the space of progressively measurable processes

v = {vt , t ∈ [0,T ]} such that for
∫ T

0 |vs|ds <∞ a.s.

Theorem (Itô’s formula)
Suppose that

Xt = X0 +

∫ t

0
usdBs +

∫ t

0
vsds,

where u ∈ L2
T ,loc(P) and v ∈ L1

T ,loc(P). Let f ∈ C1,2. Then,

Yt = f (0,X0) +

∫ t

0

∂f
∂t

(s,Xs)ds +

∫ t

0

∂f
∂x

(s,Xs)usdBs

+

∫ t

0

∂f
∂x

(s,Xs)vsds +
1
2

∫ t

0

∂2f
∂x2 (s,Xs)u2

s ds.
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In differential notation Itô’s formula can be written as

df (t ,Xt ) =
∂f
∂t

(t ,Xt )dt +
∂f
∂x

(t ,Xt )dXt +
1
2
∂2f
∂x2 (s,Xs) (dXt )

2
,

where (dXt )
2 is computed from

dXt = utdBt + vtdt ,

using the product rule
× dBt dt
dBt dt 0
dt 0 0
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Multiple stochastic integrals

L2
s([0,T ]n) is the space of symmetric square integrable functions

f : [0,T ]n → R.

For any f ∈ L2
s([0,T ]n)

‖f‖2
L2([0,T ]n) = n!

∫
∆n

f 2(t1, . . . , tn)dt1 · · · dtn,

where
∆n = {(t1, . . . , tn) ∈ [0,T ]n : 0 < t1 < · · · < tn < T}.

If f : [0,T ]n → R we define its symmetrization as

f̃ (t1, . . . , tn) =
1
n!

∑
σ

f (tσ(1), . . . , tσ(n)),

where the sum runs over all permutations σ of {1,2, . . . ,n}.
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The multiple stochastic integral of f ∈ L2
s([0,T ]n) is defined as an

iterated Itô integral :

In(f ) = n!

∫ T

0

∫ tn

0
· · ·
∫ t2

0
f (t1, . . . , tn)dBt1 · · · dBtn .

We have the following property :

E [In(f )Im(g)] =

{
0 if n 6= m
n!〈f ,g〉L2([0,T ]n) if n = m.

If f ∈ L2([0,T ]n) is not necessarily symmetric we define

In(f ) = In(̃f ).
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The nth Hermite polynomial is defined by h0(x) = 1 and

hn(x) = (−1)nex2/2 dn

dxn (e−x2/2), n ≥ 1.

Elementary properties :

h′n(x) = nhn−1(x)

hn+1(x) = xhn(x)− h′n(x) = xhn(x)− nhn−1(x).

The first Hermite poynomials are h1(x) = x , h2(x) = x2 − 1,
h3(x) = x3 − 3x , . . . .

For any a ∈ R,

eaz− 1
2 a2

=
∞∑

n=0

an

n!
hn(z).
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Theorem
For any g ∈ L2([0,T ]) such that ‖g‖L2([0,T ]) = 1, we have

In(g⊗n) = hn

(∫ T

0
gtdBt

)

where g⊗n(t1, . . . , tn) = g(t1) · · · g(tn).

Proof :

(i) Fix a ∈ R and set

Mt = exp

(
a
∫ t

0
gsdBs −

1
2

a2
∫ t

0
g2

s ds

)
.

One one hand, we have

MT = ea
∫ T

0 gsdBs− 1
2 a2

=
∞∑

n=0

an

n!
hn

(∫ T

0
gtdBt

)
.
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(ii) On the other hand, using Itô’s formula, we obtain

MT = 1 +

∫ T

0
aMsgsdBs

= 1 + aI1(g) + a2
∫ T

0
gs

∫ s

0
Mv gv dBv

= 1 + aI1(g) + a2
∫ T

0
gs

∫ s

0
gv dBv + a3

∫ T

0
gs

∫ s

0
Mv gv dBv

=
∞∑

n=0

an

n!
In(g⊗n). �
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Product formula

Let f ∈ L2
s([0,T ]n), and g ∈ L2

s([0,T ]m). For any r = 0, . . . ,n ∧m, we define
the contraction of f and g of order r to be the element of L2([0,T ]n+m−2r )
defined by

(f ⊗r g) (t1, . . . , tn−r , s1, . . . , sm−r )

=

∫
[0,T ]r

f (t1, . . . , tn−r , x1, . . . , xr )g(s1, . . . , sm−r , x1, . . . , xr )dx1 · · · dxr .

We denote by f ⊗̃r g the symmetrization of f ⊗r g.

Product of two multiple stochastic integrals

In(f )Im(g) =
n∧m∑
r=0

r !

(
n
r

)(
m
r

)
In+m−2r (f ⊗r g).

David Nualart (Kansas University) Sept. 2016 42 / 45



Product formula

Let f ∈ L2
s([0,T ]n), and g ∈ L2

s([0,T ]m). For any r = 0, . . . ,n ∧m, we define
the contraction of f and g of order r to be the element of L2([0,T ]n+m−2r )
defined by

(f ⊗r g) (t1, . . . , tn−r , s1, . . . , sm−r )

=

∫
[0,T ]r

f (t1, . . . , tn−r , x1, . . . , xr )g(s1, . . . , sm−r , x1, . . . , xr )dx1 · · · dxr .

We denote by f ⊗̃r g the symmetrization of f ⊗r g.

Product of two multiple stochastic integrals

In(f )Im(g) =
n∧m∑
r=0

r !

(
n
r

)(
m
r

)
In+m−2r (f ⊗r g).

David Nualart (Kansas University) Sept. 2016 42 / 45



Wiener Chaos expansion

Theorem
F ∈ L2(Ω) can be uniquely expanded into a sum of multiple stochastic
integrals :

F = E [F ] +
∞∑

n=1

In(fn).

For any n ≥ 1 we denote by Hn the closed subspace of L2(Ω) formed by
all multiple stochastic integrals of order n. For n = 0, H0 is the space of
constants. Then, we have the orthogonal decomposition

L2(Ω) = ⊕∞n=0Hn.

The theorem follows from the fact that if a random variable G ∈ L2(Ω) is
orthogonal to ⊕∞n=0Hn, then it is orthogonal to all random variables of the

form
(∫ T

0 gtdWt

)k
, where g ∈ L2([0,T ]), k ≥ 0. This implies that G is

orthogonal to all the exponentials exp
(∫ T

0 gtdWt

)
, which form a total set

in L2(Ω). So G = 0.
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Integral representation theorem

Theorem
Given F ∈ L2(Ω,FT ,P) there exists a unique process u in the space L2

T (P)
such that

F = E [F ] +

∫ T

0
utdBt .

Example : F = B3
T . By Itô’s formula and integrating by parts

B3
T =

∫ T

0
3B2

t dBt + 3
∫ T

0
Btdt =

∫ T

0
3B2

t dBt + 3

(
TBT −

∫ T

0
tdBt

)

=

∫ T

0
3B2

t dBt + 3
∫ T

0
(T − t)dBt

=

∫ T

0
3
[
B2

t + (T − t)
]

dBt .
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Proof :

We know that

F = E [F ] +
∞∑

n=0

In(fn).

Then, it suffices to write, for each n ≥ 1,

In(fn) = n!

∫ T

0
un(t)dBt ,

where

un(t) =

∫ t

0

∫ tn−1

0
· · ·
∫ t1

0
f (t , t1, tn, . . . , tn−1)dBt1 · · · dBtn−1 ,

and take ut =
∑∞

n=1 un(t). �
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