Lecture 1: Brownian motion and stochastic integrals

David Nualart

Department of Mathematics Kansas University

Escuela de Probabilidad CIMAT, Guanajuato, Septiembre 2016

David Nualart (Kansas University)

Sept. 2016 1/45

★ Ξ > ★ Ξ >

- Lecture 1 : Brownian motion, martingales and stochastic integrals.
- 2 Lecture 2 : Introduction to Malliavin calculus.
- Lecture 3 : Stein's method for normal approximations.
- Lecture 4 : Applications to functionals of the fractional Brownian motion.

ヘロア 人間 アメヨア 人口 ア

Multivariate normal distribution

A random vector X = (X₁,..., X_n) has the multivariate normal distribution N(μ, Σ), if its characteristic function is

$$E\left(e^{i\langle u,X
angle}
ight)=\exp\left(i\langle u,\mu
angle-rac{1}{2}u^{T}\Sigma u
ight),\,\,u\in\mathbb{R}^{n},$$

where $\mu \in \mathbb{R}^n$ and Σ is an $n \times n$ symmetric and nonnegative definite matrix.

•
$$\mu = (E(X_1), \ldots, E(X_n))$$

•
$$\Sigma_{ij} = \operatorname{Cov}(X_i, X_j)$$

If X has the N(μ, Σ) distribution, then Y = AX + b, where A is an m × n matrix and b ∈ ℝ^m, has the N(Aμ + b, AΣA^T) distribution.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

• If Σ is nonsingular, then X has a density given by

$$f(x) = (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Bivariate Normal

ъ

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stochastic processes

• A stochastic process $X = \{X_t, t \ge 0\}$ is a family of random variables

 $X_t: \Omega \to \mathbb{R}$

defined on a probability space (Ω, \mathcal{F}, P) .

イロト 不得 とくほ とくほとう

Stochastic processes

• A stochastic process $X = \{X_t, t \ge 0\}$ is a family of random variables

 $X_t: \Omega \to \mathbb{R}$

defined on a probability space (Ω, \mathcal{F}, P) .

• The probabilities on \mathbb{R}^n , $n \ge 1$,

$$P_{t_1,...,t_n} = P \circ (X_{t_1},...,X_{t_n})^{-1}$$

where $0 \le t_1 < \cdots < t_n$, are called the *finite-dimensional marginal distributions* of the process *X*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Stochastic processes

• A stochastic process $X = \{X_t, t \ge 0\}$ is a family of random variables

 $X_t: \Omega \to \mathbb{R}$

defined on a probability space (Ω, \mathcal{F}, P) .

• The probabilities on \mathbb{R}^n , $n \ge 1$,

$$P_{t_1,...,t_n} = P \circ (X_{t_1},...,X_{t_n})^{-1}$$

where $0 \le t_1 < \cdots < t_n$, are called the *finite-dimensional marginal* distributions of the process *X*.

• For every $\omega \in \Omega$, the mapping

$$t \to X_t(\omega)$$

is called a *trajectory* of the process X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem (Kolmogorov's extension theorem)

Consider a family of probability measures

$$\{P_{t_1,...,t_n}, 0 \le t_1 < \cdots < t_n, n \ge 1\}$$

such that :

- (i) $P_{t_1,...,t_n}$ is a probability on \mathbb{R}^n .
- (ii) (Consistency condition) : If $\{t_{k_1} < \cdots < t_{k_m}\} \subset \{t_1 < \cdots < t_n\}$, then $P_{t_{k_1},\ldots,t_{k_m}}$ is the marginal of P_{t_1,\ldots,t_n} , corresponding to the indexes k_1,\ldots,k_m .

Then, there exists a stochastic process $\{X_t, t \ge 0\}$ defined in some probability space (Ω, \mathcal{F}, P) , which has the family $\{P_{t_1,...,t_n}\}$ as finite-dimensional marginal distributions.

Take Ω as the set of all functions ω : [0,∞) → ℝ, F the σ-algebra generated by cylindrical sets, extend the probability from cylindrical sets to F, and set X_t(ω) = ω(t).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Gaussian processes

X = {X_t, t ≥ 0} is called *Gaussian* if all its finite-dimensional marginal distributions are multivariate normal.

イロン 不同 とくほ とくほ とう

Gaussian processes

- X = {X_t, t ≥ 0} is called *Gaussian* if all its finite-dimensional marginal distributions are multivariate normal.
- The law of a Gaussian process is determined by the mean function $E(X_t)$ and the covariance function

$$\operatorname{Cov}(X_t, X_s) = E((X_t - E(X_t))(X_s - E(X_s))).$$

ヘロン ヘアン ヘビン ヘビン

Gaussian processes

- X = {X_t, t ≥ 0} is called *Gaussian* if all its finite-dimensional marginal distributions are multivariate normal.
- The law of a Gaussian process is determined by the mean function $E(X_t)$ and the covariance function

$$\operatorname{Cov}(X_t, X_s) = E((X_t - E(X_t))(X_s - E(X_s))).$$

Suppose μ : ℝ₊ → ℝ, and Γ : ℝ₊ × ℝ₊ → ℝ is symmetric and nonnegative definite :

$$\sum_{i,j=1}^n \Gamma(t_i,t_j) a_i a_j \geq 0, \quad \forall \ t_i \geq 0, \ a_i \in \mathbb{R}.$$

Then there exists a Gaussian process with mean μ and covariance function Γ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Equivalent processes

Two processes, X, Y are *equivalent* (or X is a version of Y) if for all t ≥ 0,

$$P\{X_t = Y_t\} = 1$$

Equivalent processes

Two processes, X, Y are equivalent (or X is a version of Y) if for all t ≥ 0,

$$P\{X_t = Y_t\} = 1.$$

 Two equivalent processes may have quite different trajectories. For example, the processes X_t = 0 for all t ≥ 0 and

$$Y_t = \begin{cases} 0 & \text{if } \xi \neq t \\ 1 & \text{if } \xi = t \end{cases}$$

where $\xi \ge 0$ is a continuous random variable, are equivalent, because $P(\xi = t) = 0$, but their trajectories are different.

・ロト ・ 理 ト ・ ヨ ト ・

Equivalent processes

Two processes, X, Y are equivalent (or X is a version of Y) if for all t ≥ 0,

$$P\{X_t = Y_t\} = 1.$$

 Two equivalent processes may have quite different trajectories. For example, the processes X_t = 0 for all t ≥ 0 and

$$Y_t = \begin{cases} 0 & \text{if } \xi \neq t \\ 1 & \text{if } \xi = t \end{cases}$$

where $\xi \ge 0$ is a continuous random variable, are equivalent, because $P(\xi = t) = 0$, but their trajectories are different.

• Two processes X and Y are said to be *indistinguishable* if

$$X_t(\omega) = Y_t(\omega)$$

for all $t \ge 0$ and for all $\omega \in \Omega^*$, with $P(\Omega^*) = 1$.

 Two equivalent processes with right-continuous trajectories are indistinguishable.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Kolmogorov's continuity theorem)

Suppose that $X = \{X_t, t \in [0, T]\}$ satisfies

$$E(|X_t - X_s|^{\beta}) \leq K|t - s|^{1+\alpha},$$

for all $s, t \in [0, T]$, and for some constants $\beta, \alpha > 0$. Then, there exists a version \widetilde{X} of X such that, if $\gamma < \alpha/\beta$,

$$|\widetilde{X}_t - \widetilde{X}_{m{s}}| \leq G_\gamma |t - m{s}|^\gamma$$

for all $s, t \in [0, T]$, where G_{γ} is a random variable.

• The trajectories of \widetilde{X} are Hölder continuous of order γ for any $\gamma < \alpha/\beta$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

A stochastic process $B = \{B_t, t \ge 0\}$ is called a *Brownian motion* if :

- i) $B_0 = 0$ almost surely.
- ii) Independent increments : For all $0 \le t_1 < \cdots < t_n$ the increments $B_{t_n} B_{t_{n-1}}, \ldots, B_{t_2} B_{t_1}$, are independent random variables.
- iii) If $0 \le s < t$, the increment $B_t B_s$ has the normal distribution N(0, t s).
- iv) With probability one, $t \rightarrow B_t(\omega)$ is continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proposition

Properties i), ii), iii) are equivalent to :

 (\star) B is a Gaussian process with mean zero and covariance

 $\Gamma(\boldsymbol{s},t)=\min(\boldsymbol{s},t).$

Proposition

Properties i), ii), iii) are equivalent to :

(*) B is a Gaussian process with mean zero and covariance

 $\Gamma(s, t) = \min(s, t).$

Proof :

a) Suppose i), i) and iii). The distribution of $(B_{t_1}, \ldots, B_{t_n})$, for $0 < t_1 < \cdots < t_n$, is normal, because this vector is a linear transformation of $(B_{t_1}, B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}})$ which has independent and normal components.

The mean is zero, and for s < t, the covariance is

$$E(B_sB_t) = E(B_s(B_t - B_s + B_s)) = E(B_s(B_t - B_s)) + E(B_s^2) = s.$$

b) The converse is also easy to show. \Box

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Construction of the Brownian motion

1. The function $\Gamma(s, t) = \min(s, t)$ is symmetric and nonnegative definite because it can be written as

$$\min(s,t) = \int_0^\infty \mathbf{1}_{[0,s]}(r) \mathbf{1}_{[0,t]}(r) dr,$$

S0

$$\sum_{i,j=1}^{n} a_{i}a_{j}\min(t_{i},t_{j}) = \sum_{i,j=1}^{n} a_{i}a_{j}\int_{0}^{\infty} \mathbf{1}_{[0,t_{i}]}(r)\mathbf{1}_{[0,t_{j}]}(r)dr$$
$$= \int_{0}^{\infty} \left[\sum_{i=1}^{n} a_{i}\mathbf{1}_{[0,t_{i}]}(r)\right]^{2}dr \ge 0.$$

Therefore, by Kolmogorov's extension theorem there exists a Gaussian process *B* with zero mean and covariance function min(s, t).

ヘロト ヘワト ヘビト ヘビト

2. The process B satisfies

$$E\left[\left(B_{t}-B_{s}\right)^{2k}
ight]=rac{(2k)!}{2^{k}k!}(t-s)^{k}, \quad s\leq t$$

for any $k \ge 1$, because the distribution of $B_t - B_s$ is N(0, t - s).

3. Therefore, by the Kolmogorov's continuity theorem, there exist a version \widetilde{B} of *B*, such that \widetilde{B} has Hölder continuous trajectories of order γ for any $\gamma < \frac{k-1}{2k}$ on any interval [0, T]. This implies that the paths are γ -Hölder on [0, T] for any $\gamma < \frac{1}{2}$ and for any T > 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Brownian motion and random walk

- Let {*ξ_k*, 1 ≤ *k* ≤ *n*} be independent and identically distributed random variables with zero mean and variance one.
- Define $S_n(0) = 0$,

$$S_n(\frac{kT}{n}) = \sqrt{T}\frac{\xi_1 + \dots + \xi_k}{\sqrt{n}}, \quad k = 1, \dots, n$$

and extend $S_n(t)$ to $t \in [0, T]$ by linear interpolation.

• Donsker Invariance Principle : The law of the random walk S_n on C([0, T]) converges to the Wiener measure, which is the law of the Brownian motion. That is, that for any continuous and bounded function $\varphi : C([0, T]) \to \mathbb{R}$,

$$E(\varphi(S_n)) \stackrel{n \to \infty}{\longrightarrow} E(\varphi(B)),$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Simulations of Brownian motion

Sept. 2016 15/45

Basic properties

1. Selfsimilarity :

For any a > 0, the process $\{a^{-\frac{1}{2}}B_{at}, t \ge 0\}$ is also a Brownian motion.

🖹 🔊 ९ (ભ

- 2. For any h > 0, the process $\{B_{t+h} B_h, t \ge 0\}$ is a Brownian motion.
- 3. The process $\{-B_t, t \ge 0\}$ is a Brownian motion.
- 4. The process

$$X_t = \begin{cases} tB_{1/t}, & t > 0\\ 0, & t = 0 \end{cases}$$

is a Brownian motion.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Quadratic variation

Fix a time interval [0, t] and consider a partition

$$\pi = \{ \mathbf{0} = t_0 < t_1 < \cdots < t_n = t \}.$$

Define $\Delta t_k = t_k - t_{k-1}$, $\Delta B_k = B_{t_k} - B_{t_{k-1}}$ and $|\pi| = \max_{1 \le k \le n} \Delta t_k$.

Proposition

The following convergence holds in L^2 :

$$\lim_{\pi|\to 0}\sum_{k=1}^n \left(\Delta B_k\right)^2 = t.$$

• We can say that $(\Delta B_t)^2 \sim \Delta t$

David Nualart (Kansas University)

Sept. 2016 18/45

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Proof : Set $\xi_k = (\Delta B_k)^2 - \Delta t_k$. The random variables ξ_k are independent and centered. Thus,

$$E\left[\left(\sum_{k=1}^{n} (\Delta B_{k})^{2} - t\right)^{2}\right] = E\left[\left(\sum_{k=1}^{n} \xi_{k}\right)^{2}\right] = \sum_{k=1}^{n} E\left[\xi_{k}^{2}\right]$$
$$= \sum_{k=1}^{n} \left[3\left(\Delta t_{k}\right)^{2} - 2\left(\Delta t_{k}\right)^{2} + \left(\Delta t_{k}\right)^{2}\right]$$
$$= 2\sum_{k=1}^{n} (\Delta t_{k})^{2} \le 2t|\pi| \xrightarrow{|\pi| \to 0} 0. \quad \Box$$

Sept. 2016 19/45

Proof : Set $\xi_k = (\Delta B_k)^2 - \Delta t_k$. The random variables ξ_k are independent and centered. Thus,

$$E\left[\left(\sum_{k=1}^{n} (\Delta B_k)^2 - t\right)^2\right] = E\left[\left(\sum_{k=1}^{n} \xi_k\right)^2\right] = \sum_{k=1}^{n} E\left[\xi_k^2\right]$$
$$= \sum_{k=1}^{n} \left[3\left(\Delta t_k\right)^2 - 2\left(\Delta t_k\right)^2 + \left(\Delta t_k\right)^2\right]$$
$$= 2\sum_{k=1}^{n} (\Delta t_k)^2 \le 2t|\pi| \xrightarrow{|\pi| \to 0} 0. \quad \Box$$

Exercise : Using the Borel-Cantelli lemma, show that if $\{\pi^n\}$ is a sequence of partitions of [0, t] such that $\sum_n |\pi^n| < \infty$, then $\sum_{k=1}^n (\Delta B_k)^2$ converges almost surely to *t*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Infinite total variation

Define

$$V_t = \sup_{\pi} \sum_{k=1}^n |\Delta B_k|$$

Then,

$$P(V_t = \infty) = 1.$$

In fact, using the continuity of the trajectories of the Brownian motion, we have, on the set $V < \infty$,

$$\sum_{k=1}^{n} \left(\Delta B_k \right)^2 \leq \sup_k \left| \Delta B_k \right| \left(\sum_{k=1}^{n} \left| \Delta B_k \right| \right) \leq V \sup_k \left| \Delta B_k \right| \stackrel{|\pi| \to 0}{\longrightarrow} 0.$$

Then, $V < \infty$ contradicts the fact that $\sum_{k=1}^{n} (\Delta B_k)^2$ converges in L^2 to t as $|\pi| \to 0$.

Sept. 2016 20/45

= 900

イロト 不得 とくほ とくほ とう

Martingales

We assume that {*F_t*, *t* ≥ 0} is an increasing family of *σ*-fields, contained in *F* (*filtration*).

Definition

An adapted process $M = \{M_t, t \ge 0\}$ is called a *martingale* with respect to \mathcal{F}_t if

- (i) For all $t \ge 0$, $E(|M_t|) < \infty$.
- (ii) For each $s \leq t$, $E(M_t | \mathcal{F}_s) = M_s$.

Martingales

We assume that {*F_t*, *t* ≥ 0} is an increasing family of *σ*-fields, contained in *F* (*filtration*).

Definition

An adapted process $M = \{M_t, t \ge 0\}$ is called a *martingale* with respect to \mathcal{F}_t if

(i) For all
$$t \ge 0$$
, $E(|M_t|) < \infty$.

(ii) For each
$$s \leq t$$
, $E(M_t | \mathcal{F}_s) = M_s$.

Property (ii) can also be written as :

$$E(M_t - M_s | \mathcal{F}_s) = 0.$$

David Nualart (Kansas University)

Let B_t be a Brownian motion and let \mathcal{F}_t be the filtration generated by B_t :

$$\mathcal{F}_t = \sigma\{\boldsymbol{B}_s, \boldsymbol{0} \leq \boldsymbol{s} \leq t\}.$$

Then, the processes

$$M_t^{(1)} = B_t$$

$$M_t^{(2)} = B_t^2 - t$$

$$M_t^{(3)} = \exp(aB_t - \frac{a^2t}{2})$$

where $a \in \mathbb{R}$, are martingales.

1. B_t is a martingale because

$$E(B_t-B_s|\mathcal{F}_s)=E(B_t-B_s)=0.$$

・ロト・雪・・ヨト・ヨー めんの

David Nualart (Kansas University)

Sept. 2016 23/45

1. B_t is a martingale because

$$E(B_t - B_s | \mathcal{F}_s) = E(B_t - B_s) = 0$$

2. For $B_t^2 - t$, we can write, using the properties of the conditional expectation, for s < t

$$\begin{split} E(B_t^2 | \mathcal{F}_s) &= E((B_t - B_s + B_s)^2 | \mathcal{F}_s) \\ &= E((B_t - B_s)^2 | \mathcal{F}_s) + 2E((B_t - B_s) B_s | \mathcal{F}_s) \\ &+ E(B_s^2 | \mathcal{F}_s) \\ &= E(B_t - B_s)^2 + 2B_s E((B_t - B_s) | \mathcal{F}_s) + B_s^2 \\ &= t - s + B_s^2. \end{split}$$

Sept. 2016 23/45

イロン 不同 とくほ とくほ とう

1. B_t is a martingale because

$$E(B_t - B_s | \mathcal{F}_s) = E(B_t - B_s) = 0$$

2. For $B_t^2 - t$, we can write, using the properties of the conditional expectation, for s < t

$$E(B_t^2 | \mathcal{F}_s) = E((B_t - B_s + B_s)^2 | \mathcal{F}_s)$$

= $E((B_t - B_s)^2 | \mathcal{F}_s) + 2E((B_t - B_s) | B_s | \mathcal{F}_s)$
 $+ E(B_s^2 | \mathcal{F}_s)$
= $E(B_t - B_s)^2 + 2B_s E((B_t - B_s) | \mathcal{F}_s) + B_s^2$
= $t - s + B_s^2$.

3. Finally, for $\exp(aB_t - \frac{a^2t}{2})$ we have $E(e^{aB_t - \frac{a^2t}{2}} | \mathcal{F}_s) = e^{aB_s} E(e^{a(B_t - B_s) - \frac{a^2t}{2}} | \mathcal{F}_s)$ $= e^{aB_s} E(e^{a(B_t - B_s) - \frac{a^2t}{2}})$ $= e^{aB_s} e^{\frac{a^2(t-s)}{2} - \frac{a^2t}{2}} = e^{aB_s - \frac{a^2s}{2}}$

Theorem

Let $\{M_t, t \in [0, T]\}$ be a continuous martingale such that $E(|M_T|^p) < \infty$ for some $p \ge 1$. Then, for all $\lambda > 0$ we have

$$P\left(\sup_{0\leq t\leq T}|M_t|>\lambda\right)\leq \frac{1}{\lambda^p}E(|M_T|^p).$$
(1)

If p > 1, then

$$E\left(\sup_{0\leq t\leq T}|M_t|^p\right)\leq \left(\frac{p}{p-1}\right)^p E(|M_T|^p).$$
(2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The Wiener integral

• The integral of a step function $\varphi_t = \sum_{j=0}^{m-1} a_j \mathbf{1}_{(t_j, t_{j+1}]}(t) \in \mathcal{E}$ with respect to a Brownian motion B on [0, T] is defined by

$$\int_{0}^{T} \varphi_{t} dB_{t} = \sum_{j=0}^{m-1} a_{j} (B_{t_{j+1}} - B_{t_{j}})$$
The Wiener integral

• The integral of a step function $\varphi_t = \sum_{j=0}^{m-1} a_j \mathbf{1}_{(t_j, t_{j+1}]}(t) \in \mathcal{E}$ with respect to a Brownian motion B on [0, T] is defined by

$$\int_0^T \varphi_t dB_t = \sum_{j=0}^{m-1} a_j (B_{t_{j+1}} - B_{t_j})$$

The mapping φ → ∫₀^T φ_tdB_t from ε ⊂ L²([0, T]) to L²(Ω) is linear and isometric :

$$E\left[\left(\int_{0}^{T}\varphi_{t}dB_{t}\right)^{2}\right]=\sum_{j=0}^{m-1}a_{j}^{2}(t_{j+1}-t_{j})=\int_{0}^{T}\varphi_{t}^{2}dt=\|\varphi\|_{L^{2}([0,T])}^{2}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The Wiener integral

The integral of a step function φ_t = ∑_{j=0}^{m-1} a_j 1_{(t_j,t_{j+1}]}(t) ∈ ε with respect to a Brownian motion B on [0, T] is defined by

$$\int_0^T \varphi_t dB_t = \sum_{j=0}^{m-1} a_j (B_{t_{j+1}} - B_{t_j})$$

The mapping φ → ∫₀^T φ_t dB_t from ε ⊂ L²([0, T]) to L²(Ω) is linear and isometric :

$$E\left[\left(\int_{0}^{T}\varphi_{t}dB_{t}\right)^{2}\right]=\sum_{j=0}^{m-1}a_{j}^{2}(t_{j+1}-t_{j})=\int_{0}^{T}\varphi_{t}^{2}dt=\|\varphi\|_{L^{2}([0,T])}^{2}.$$

• \mathcal{E} is a dense subspace of $L^2([0, T])$. Therefore, the mapping

$$\varphi \to B(\varphi) =: \int_0^T \varphi_t dB_t$$

can be extended to a linear isometry between $L^2([0, T])$ and the Gaussian subspace of $L^2(\Omega)$ spanned by $\{B_t, t \in [0, T]\}$.

David Nualart (Kansas University)

Sept. 2016 25/45

Progressively measurable processes

Let \mathcal{F}_t be the σ -field generated by the random variables $\{B_s, 0 \le s \le t\}$ and the sets of probability zero.

Definition

We say that $u = \{u_t, t \in [0, T]\}$ is *progressively measurable* if for any $t \in [0, T]$, the restriction of u to $\Omega \times [0, t]$ is $\mathcal{F}_t \times \mathcal{B}([0, t])$ -measurable.

イロト イヨト イヨト イ

Progressively measurable processes

Let \mathcal{F}_t be the σ -field generated by the random variables $\{B_s, 0 \le s \le t\}$ and the sets of probability zero.

Definition

We say that $u = \{u_t, t \in [0, T]\}$ is *progressively measurable* if for any $t \in [0, T]$, the restriction of u to $\Omega \times [0, t]$ is $\mathcal{F}_t \times \mathcal{B}([0, t])$ -measurable.

- Let P be the σ-field of sets A ⊂ Ω × [0, T] such that 1_A is progressively measurable.
- We denote by L²_T(P) the Hilbert space L²(Ω × [0, T], P, P × ℓ), where ℓ is the Lebesgue measure, equipped with the norm

$$\|u\|^2 = E\left(\int_0^T u_s^2 ds\right).$$

ヘロト ヘワト ヘビト ヘビト

Stochastic integrals

• $u = \{u_t, t \in [0, T]\}$ is a simple process if

$$u_t = \sum_{j=0}^{n-1} \phi_j \mathbf{1}_{(t_j, t_{j+1}]}(t),$$

where $0 \le t_0 \le t_1 \le \cdots \le t_n = T$ and ϕ_j are \mathcal{F}_{t_j} -measurable random variables such that $E(\phi_j^2) < \infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Stochastic integrals

• $u = \{u_t, t \in [0, T]\}$ is a simple process if

$$u_t = \sum_{j=0}^{n-1} \phi_j \mathbf{1}_{(t_j, t_{j+1}]}(t),$$

where $0 \le t_0 \le t_1 \le \cdots \le t_n = T$ and ϕ_j are \mathcal{F}_{t_j} -measurable random variables such that $E(\phi_j^2) < \infty$.

• We define the stochastic integral of *u* as

$$I(u) := \int_0^T u_t dB_t = \sum_{j=0}^{n-1} \phi_j \left(B_{t_{j+1}} - B_{t_j} \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Properties of the stochastic integral of simple processes

(i) Linearity :

$$\int_0^T (au_t + bv_t) dB_t = a \int_0^T u_t dB_t + b \int_0^T v_t dB_t.$$

(ii) Zero mean :

$$E\left(\int_0^T u_t dB_t\right) = 0.$$

In fact,

$$E\left(\int_{0}^{T} u_{t} dB_{t}\right) = \sum_{j=0}^{n-1} E\left[\phi_{j}\left(B_{t_{j+1}} - B_{t_{j}}\right)\right]$$
$$= \sum_{j=0}^{n-1} E[\phi_{j}]E[B_{t_{j+1}} - B_{t_{j}}] = 0.$$

(iii) Isometry property :

$$E\left[\left(\int_0^T u_t dB_t\right)^2\right] = E\left(\int_0^T u_t^2 dt\right).$$

トレット 山田 マール・ 山田 マート・

David Nualart (Kansas University)

Sept. 2016 29/45

(iii) Isometry property :

$$E\left[\left(\int_0^T u_t dB_t\right)^2\right] = E\left(\int_0^T u_t^2 dt\right).$$

Proof : Set $\Delta B_j = B_{t_{j+1}} - B_{t_j}$. Then

$$E\left(\phi_{i}\phi_{j}\Delta B_{i}\Delta B_{j}\right) = \begin{cases} 0 & \text{if } i \neq j \\ E\left(\phi_{j}^{2}\right)\left(t_{j+1} - t_{j}\right) & \text{if } i = j \end{cases}$$

because if i < j the random variables $\phi_i \phi_j \Delta B_i$ and ΔB_j are independent and if i = j the random variables ϕ_i^2 and $(\Delta B_i)^2$ are independent. So, we obtain

$$E\left[\left(\int_{0}^{T} u_{t} dB_{t}\right)^{2}\right] = \sum_{i,j=0}^{n-1} E\left(\phi_{i} \phi_{j} \Delta B_{i} \Delta B_{j}\right) = \sum_{i=0}^{n-1} E\left(\phi_{i}^{2}\right)\left(t_{i+1} - t_{i}\right)$$
$$= E\left(\int_{0}^{T} u_{t}^{2} dt\right). \quad \Box$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Proposition

The space \mathcal{E} of simple processes is dense in $L^2_T(\mathcal{P})$.

David Nualart (Kansas University)

Proposition

The space \mathcal{E} of simple processes is dense in $L^2_T(\mathcal{P})$.

Proof : Use the approximating sequence

$$u_t^{(n)} = \sum_{j=1}^{n-1} \left(\frac{n}{T} \int_{t_{j-1}}^{t_j} u_s ds \right) \mathbf{1}_{(t_j, t_{j+1}]}(t),$$

where $t_j = \frac{jT}{n}$. \Box

ヘロト ヘワト ヘビト ヘビト

Proposition

The stochastic integral can be extended to a linear isometry :

 $I: L^2_T(\mathcal{P}) \to L^2(\Omega).$

Proof : This follows form the fact that \mathcal{E} is dense in $L^2_T(\mathcal{P})$. \Box .

• The stochastic integral has the following properties :

 $E\left[I(u)\right]=0$

and

$$E[I(u)I(v)] = E\left(\int_0^\infty u_s v_s ds\right)$$

イロン 不得 とくほ とくほ とうほ

$$\int_0^T B_t dB_t = \frac{1}{2}B_T^2 - \frac{1}{2}T$$

Proof : The process B_t being continuous in mean square, we can choose as approximating sequence

$$u_t^{(n)} = \sum_{j=1}^n B_{t_{j-1}} \mathbf{1}_{(t_{j-1},t_j]}(t),$$

l

where $t_j = \frac{jT}{n}$, and we obtain

$$\int_{0}^{T} B_{t} dB_{t} = \lim_{n \to \infty} \sum_{j=1}^{n} B_{t_{j-1}} \left(B_{t_{j}} - B_{t_{j-1}} \right)$$
$$= \frac{1}{2} \lim_{n \to \infty} \sum_{j=1}^{n} \left(B_{t_{j}}^{2} - B_{t_{j-1}}^{2} \right) - \frac{1}{2} \lim_{n \to \infty} \sum_{j=1}^{n} \left(B_{t_{j}} - B_{t_{j-1}} \right)^{2}$$
$$= \frac{1}{2} B_{T}^{2} - \frac{1}{2} T.$$

David Nualart (Kansas University)

Sept. 2016 32/45

Indefinite stochastic integrals

For $u \in L^2_T(\mathcal{P})$, we define the stochastic process

$$\int_0^t u_s dB_s := \int_0^T u_s \mathbf{1}_{[0,t]}(s) dB_s , \quad t \in [0,T]$$

Proposition

Let $u \in L^2_T(\mathcal{P})$. The indefinite stochastic integral

$$M_t = \int_0^t u_s dB_s$$

is a square integrable martingale with respect to the filtration \mathcal{F}_t and admits a continuous version.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

ltô's formula

- Itô's stochastic integral does not follow the chain rule of classical calculus.
- Example :

$$\int_0^t B_s dB_s = \frac{1}{2}B_t^2 - \frac{t}{2},$$

whereas if x_t is a differentiable function such that $x_0 = 0$,

$$\int_0^t x_s dx_s = \int_0^t x_s x_s' ds = \frac{1}{2} x_t^2.$$

In differential form

$$d(B_t^2)=2B_tdB_t+dt,$$

and *dt* comes from $(dB_t)^2 \sim dt$ and the Taylor expansion up to the second order.

イロト 不得 とくほ とくほとう

- The stochastic integral can be extended (using convergence in probability) to progressively measurable processes satisfying $\int_0^T u_s^2 ds < \infty$ a.s. Denote the class of those processes by $L^2_{T,loc}(\mathcal{P})$.
- Denote by $L^{1}_{T,loc}(\mathcal{P})$ the space of progressively measurable processes $v = \{v_t, t \in [0, T]\}$ such that for $\int_0^T |v_s| ds < \infty$ a.s.

Theorem (Itô's formula)

Suppose that

$$X_t = X_0 + \int_0^t u_s dB_s + \int_0^t v_s ds,$$

where $u \in L^2_{T,loc}(\mathcal{P})$ and $v \in L^1_{T,loc}(\mathcal{P})$. Let $f \in C^{1,2}$. Then,

$$Y_t = f(0, X_0) + \int_0^t \frac{\partial f}{\partial t}(s, X_s) ds + \int_0^t \frac{\partial f}{\partial x}(s, X_s) u_s dB_s \\ + \int_0^t \frac{\partial f}{\partial x}(s, X_s) v_s ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, X_s) u_s^2 ds.$$

In differential notation Itô's formula can be written as

$$df(t, X_t) = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial x}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(s, X_s)(dX_t)^2,$$

where $(dX_t)^2$ is computed from

$$dX_t = u_t dB_t + v_t dt,$$

using the product rule

×	dB_t	dt
dB_t	dt	0
dt	0	0

Multiple stochastic integrals

*L*²_s([0, *T*]ⁿ) is the space of symmetric square integrable functions
 f: [0, *T*]ⁿ → ℝ.

Multiple stochastic integrals

- L²_s([0, *T*]ⁿ) is the space of symmetric square integrable functions *f* : [0, *T*]ⁿ → ℝ.
- For any $f \in L^2_s([0, T]^n)$

$$||f||^2_{L^2([0,T]^n)} = n! \int_{\Delta_n} f^2(t_1,\ldots,t_n) dt_1 \cdots dt_n,$$

where

$$\Delta_n = \{ (t_1, \ldots, t_n) \in [0, T]^n : 0 < t_1 < \cdots < t_n < T \}.$$

Multiple stochastic integrals

- $L^2_s([0, T]^n)$ is the space of symmetric square integrable functions $f: [0, T]^n \to \mathbb{R}$.
- For any $f \in L^2_s([0, T]^n)$

$$||f||^2_{L^2([0,T]^n)} = n! \int_{\Delta_n} f^2(t_1,\ldots,t_n) dt_1 \cdots dt_n,$$

where

$$\Delta_n = \{ (t_1, \ldots, t_n) \in [0, T]^n : 0 < t_1 < \cdots < t_n < T \}.$$

• If $f : [0, T]^n \to \mathbb{R}$ we define its symmetrization as

$$\widetilde{f}(t_1,\ldots,t_n)=\frac{1}{n!}\sum_{\sigma}f(t_{\sigma(1)},\ldots,t_{\sigma(n)}),$$

where the sum runs over all permutations σ of $\{1, 2, ..., n\}$.

Sept. 2016 37/45

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The multiple stochastic integral of f ∈ L²_s([0, T]ⁿ) is defined as an iterated Itô integral :

$$I_n(f) = n! \int_0^T \int_0^{t_n} \cdots \int_0^{t_2} f(t_1, \ldots, t_n) dB_{t_1} \cdots dB_{t_n}.$$

Sept. 2016 38/45

The multiple stochastic integral of f ∈ L²_s([0, T]ⁿ) is defined as an iterated Itô integral :

$$I_n(f) = n! \int_0^T \int_0^{t_n} \cdots \int_0^{t_2} f(t_1, \ldots, t_n) dB_{t_1} \cdots dB_{t_n}.$$

• We have the following property :

$$E[I_n(f)I_m(g)] = \begin{cases} 0 & \text{if } n \neq m \\ n! \langle f, g \rangle_{L^2([0,T]^n)} & \text{if } n = m. \end{cases}$$

The multiple stochastic integral of f ∈ L²_s([0, T]ⁿ) is defined as an iterated Itô integral :

$$I_n(f) = n! \int_0^T \int_0^{t_n} \cdots \int_0^{t_2} f(t_1, \ldots, t_n) dB_{t_1} \cdots dB_{t_n}.$$

• We have the following property :

$$E[I_n(f)I_m(g)] = \begin{cases} 0 & \text{if } n \neq m \\ n! \langle f, g \rangle_{L^2([0,T]^n)} & \text{if } n = m. \end{cases}$$

If *f* ∈ *L*²([0, *T*]^{*n*}) is not necessarily symmetric we define
 I_n(*f*) = *I_n*(*t̃*).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}), \quad n \ge 1.$$

Sept. 2016 39/45

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}), \quad n \ge 1.$$

Elementary properties :

$$h'_n(x) = nh_{n-1}(x)$$

 $h_{n+1}(x) = xh_n(x) - h'_n(x) = xh_n(x) - nh_{n-1}(x).$

∃ 9900

・ロト ・聞ト ・ヨト ・ヨト

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}), \quad n \ge 1.$$

Elementary properties :

$$h'_n(x) = nh_{n-1}(x)$$

 $h_{n+1}(x) = xh_n(x) - h'_n(x) = xh_n(x) - nh_{n-1}(x).$

• The first Hermite poynomials are $h_1(x) = x$, $h_2(x) = x^2 - 1$, $h_3(x) = x^3 - 3x$,

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}), \quad n \ge 1.$$

Elementary properties :

$$h'_n(x) = nh_{n-1}(x)$$

 $h_{n+1}(x) = xh_n(x) - h'_n(x) = xh_n(x) - nh_{n-1}(x).$

- The first Hermite poynomials are $h_1(x) = x$, $h_2(x) = x^2 1$, $h_3(x) = x^3 3x$,
- For any $a \in \mathbb{R}$,

$$e^{az-\frac{1}{2}a^2} = \sum_{n=0}^{\infty} \frac{a^n}{n!} h_n(z).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

For any $g \in L^2([0, T])$ such that $\|g\|_{L^2([0, T])} = 1$, we have

$$I_n(g^{\otimes n}) = h_n\left(\int_0^T g_t dB_t\right)$$

where $g^{\otimes n}(t_1,\ldots,t_n) = g(t_1)\cdots g(t_n)$.

David Nualart (Kansas University)

Sept. 2016 40/45

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

For any $g \in L^2([0, T])$ such that $\|g\|_{L^2([0, T])} = 1$, we have

$$I_n(g^{\otimes n}) = h_n\left(\int_0^T g_t dB_t\right)$$

where $g^{\otimes n}(t_1,\ldots,t_n) = g(t_1)\cdots g(t_n)$.

Proof :

(i) Fix $a \in \mathbb{R}$ and set

$$M_t = \exp\left(a\int_0^t g_s dB_s - \frac{1}{2}a^2\int_0^t g_s^2 ds
ight).$$

One one hand, we have

$$M_T = e^{a \int_0^T g_s dB_s - \frac{1}{2}a^2} = \sum_{n=0}^\infty \frac{a^n}{n!} h_n \left(\int_0^T g_t dB_t \right)$$

David Nualart (Kansas University)

Sept. 2016 40/45

イロン 不得 とくほ とくほ とうほ

(ii) On the other hand, using Itô's formula, we obtain

$$M_{T} = 1 + \int_{0}^{T} aM_{s}g_{s}dB_{s}$$

= 1 + al_{1}(g) + a^{2} \int_{0}^{T} g_{s} \int_{0}^{s} M_{v}g_{v}dB_{v}
= 1 + al_{1}(g) + a^{2} $\int_{0}^{T} g_{s} \int_{0}^{s} g_{v}dB_{v} + a^{3} \int_{0}^{T} g_{s} \int_{0}^{s} M_{v}g_{v}dB_{v}$
= $\sum_{n=0}^{\infty} \frac{a^{n}}{n!} l_{n}(g^{\otimes n}).$

David Nualart (Kansas University)

≤ ≥ Sept. 2016 41/45

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

Product formula

Let $f \in L^2_s([0, T]^n)$, and $g \in L^2_s([0, T]^m)$. For any $r = 0, ..., n \land m$, we define the *contraction* of *f* and *g* of order *r* to be the element of $L^2([0, T]^{n+m-2r})$ defined by

$$(f \otimes_r g)(t_1, \ldots, t_{n-r}, s_1, \ldots, s_{m-r}) = \int_{[0,T]^r} f(t_1, \ldots, t_{n-r}, x_1, \ldots, x_r) g(s_1, \ldots, s_{m-r}, x_1, \ldots, x_r) dx_1 \cdots dx_r.$$

イロト 不得 とくほ とくほとう

Product formula

Let $f \in L^2_s([0, T]^n)$, and $g \in L^2_s([0, T]^m)$. For any $r = 0, ..., n \land m$, we define the *contraction* of *f* and *g* of order *r* to be the element of $L^2([0, T]^{n+m-2r})$ defined by

$$(f \otimes_r g)(t_1, \ldots, t_{n-r}, s_1, \ldots, s_{m-r}) = \int_{[0,T]^r} f(t_1, \ldots, t_{n-r}, x_1, \ldots, x_r) g(s_1, \ldots, s_{m-r}, x_1, \ldots, x_r) dx_1 \cdots dx_r.$$

- We denote by $f \otimes_r g$ the symmetrization of $f \otimes_r g$.
- Product of two multiple stochastic integrals

$$I_n(f)I_m(g) = \sum_{r=0}^{n \wedge m} r! \binom{n}{r} \binom{m}{r} I_{n+m-2r}(f \otimes_r g).$$

Wiener Chaos expansion

Theorem

 $F \in L^2(\Omega)$ can be uniquely expanded into a sum of multiple stochastic integrals :

$$F = E[F] + \sum_{n=1}^{\infty} I_n(f_n).$$

Wiener Chaos expansion

Theorem

 $F \in L^2(\Omega)$ can be uniquely expanded into a sum of multiple stochastic integrals :

$$F=E[F]+\sum_{n=1}^{\infty}I_n(f_n).$$

 For any n ≥ 1 we denote by H_n the closed subspace of L²(Ω) formed by all multiple stochastic integrals of order n. For n = 0, H₀ is the space of constants. Then, we have the orthogonal decomposition

$$L^2(\Omega) = \oplus_{n=0}^{\infty} \mathcal{H}_n.$$

• The theorem follows from the fact that if a random variable $G \in L^2(\Omega)$ is orthogonal to $\bigoplus_{n=0}^{\infty} \mathcal{H}_n$, then it is orthogonal to all random variables of the form $\left(\int_0^T g_t dW_t\right)^k$, where $g \in L^2([0, T])$, $k \ge 0$. This implies that G is orthogonal to all the exponentials $\exp\left(\int_0^T g_t dW_t\right)$, which form a total set in $L^2(\Omega)$. So G = 0.

Integral representation theorem

Theorem

Given $F \in L^2(\Omega, \mathcal{F}_T, P)$ there exists a unique process u in the space $L^2_T(\mathcal{P})$ such that

$$F=E[F]+\int_0^t u_t dB_t.$$

Example : $F = B_T^3$. By Itô's formula and integrating by parts

$$B_{T}^{3} = \int_{0}^{T} 3B_{t}^{2} dB_{t} + 3 \int_{0}^{T} B_{t} dt = \int_{0}^{T} 3B_{t}^{2} dB_{t} + 3 \left(TB_{T} - \int_{0}^{T} t dB_{t} \right)$$

$$= \int_{0}^{T} 3B_{t}^{2} dB_{t} + 3 \int_{0}^{T} (T - t) dB_{t}$$

$$= \int_{0}^{T} 3 \left[B_{t}^{2} + (T - t) \right] dB_{t}.$$

ヘロト ヘワト ヘビト ヘビト

Proof :

We know that

$$F=E[F]+\sum_{n=0}^{\infty}I_n(f_n).$$

Then, it suffices to write, for each $n \ge 1$,

$$I_n(f_n) = n! \int_0^T u_n(t) dB_t,$$

where

$$u_n(t) = \int_0^t \int_0^{t_{n-1}} \cdots \int_0^{t_1} f(t, t_1, t_n, \dots, t_{n-1}) dB_{t_1} \cdots dB_{t_{n-1}},$$

and take $u_t = \sum_{n=1}^\infty u_n(t)$. \Box