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Outline

@ Lecture 1 : Brownian motion, martingales and stochastic integrals.
@ Lecture 2 : Introduction to Malliavin calculus.
© Lecture 3 : Stein’s method for normal approximations.

© Lecture 4 : Applications to functionals of the fractional Brownian
motion.
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Multivariate normal distribution

@ Arandom vector X = (Xi,..., X,) has the multivariate normal
distribution N(u, X), if its characteristic function is

. , 1
E (e’<“vx>> = exp (/(U, W) — 2uTZu) , UER",

where © € R" and X is an n x n symmetric and nonnegative definite
matrix.

® y=(E(X),....E(X))

@ X = Cov(Xi, X))

@ If X has the N(u, X) distribution, then Y = AX + b, where Aisan mx n
matrix and b € R™, has the N(Au + b, ALAT) distribution.
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@ If X is nonsingular, then X has a density given by

f(x) = (2r) "2 (det )2 exp (—;(x — )" E N (x - ,,L)) ,
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Stochastic processes

@ A stochastic process X = {X;,t > 0} is a family of random variables
X[ Q2 —>R

defined on a probability space (2, F, P).
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Stochastic processes

@ A stochastic process X = {X;,t > 0} is a family of random variables
X[ Q2 —>R

defined on a probability space (2, F, P).
@ The probabilities on R", n > 1,

Py tn=Po(Xy,..., X))

where 0 < f < --- < Iy, are called the finite-dimensional marginal
distributions of the process X.
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Stochastic processes

@ A stochastic process X = {X;,t > 0} is a family of random variables
X[ Q2 —>R

defined on a probability space (2, F, P).
@ The probabilities on R”, n > 1,
Pty =Po (X, X))

where 0 < f < --- < Iy, are called the finite-dimensional marginal
distributions of the process X.

@ For every w € Q, the mapping
t— Xt(w)

is called a trajectory of the process X.
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Theorem (Kolmogorov’s extension theorem)
Consider a family of probability measures

(P4, 0<t < ---<th,n>1}

such that :
(i) Pyt is aprobability on R".

(i) (Consistency condition) : If {tx, < --- <t} C {ti <--- < ty}, then
Py, ....to, IS the marginal of Py, . ;,, corresponding to the indexes
3 P km.
Then, there exists a stochastic process { X;,t > 0} defined in some

probability space (2, F, P), which has the family {Py, .. 1} as
finite-dimensional marginal distributions.

@ Take Q as the set of all functions w : [0, 0) — R, F the o-algebra
generated by cylindrical sets, extend the probability from cylindrical sets
to F, and set X;(w) = w(f).
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Gaussian processes

@ X ={X;,t > 0} is called Gaussian if all its finite-dimensional marginal
distributions are multivariate normal.
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Gaussian processes

@ X ={X;,t > 0} is called Gaussian if all its finite-dimensional marginal
distributions are multivariate normal.

@ The law of a Gaussian process is determined by the mean function
E(X;) and the covariance function

Cov(Xe, Xs) = E((X: — E(X))(Xs — E(X5)):
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Gaussian processes

@ X ={X;,t > 0} is called Gaussian if all its finite-dimensional marginal
distributions are multivariate normal.

@ The law of a Gaussian process is determined by the mean function
E(X;) and the covariance function

Cov(Xe, Xs) = E((X: — E(X))(Xs — E(X5)):

@ Suppose i : Ry — R,and I : Ry x Ry — R is symmetric and
nonnegative definite :

n
Z F(t,-, t,-)a,-a,- >0, V>0, a €R.
i =1

Then there exists a Gaussian process with mean p and covariance
function I'.
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Equivalent processes

@ Two processes, X, Y are equivalent (or X is a version of Y) if for all
t>0,
P{X; =Y} =1.
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Equivalent processes

@ Two processes, X, Y are equivalent (or X is a version of Y) if for all
t>0,
P{X; =Y} =1.

@ Two equivalent processes may have quite different trajectories. For
example, the processes X; = 0 for all t > 0 and

[0 if £#t
Y"{ 1 if &=t

where £ > 0 is a continuous random variable, are equivalent, because
P(¢ = t) = 0, but their trajectories are different.
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Equivalent processes

@ Two processes, X, Y are equivalent (or X is a version of Y) if for all
t>0,
P{X; =Y} =1.

@ Two equivalent processes may have quite different trajectories. For
example, the processes X; = 0 for all t > 0 and

[0 if £#t
Y"{ 1 if &=t

where £ > 0 is a continuous random variable, are equivalent, because
P(¢ = t) = 0, but their trajectories are different.
@ Two processes X and Y are said to be indistinguishable if
Xi(w) = Yi(w)
forall t > 0 and for all w € Q*, with P(Q*) = 1.
@ Two equivalent processes with right-continuous trajectories are
indistinguishable.
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Regularity of trajectories

Theorem (Kolmogorov’s continuity theorem)
Suppose that X = {X;, t € [0, T]} satisfies

E(1X: = X|”) < K|t — s|"*,

for all s, te [0, T], and for some constants 3, « > 0. Then, there exists a
version X of X such that, ify < a/p,

1X; — Xs| < G|t — 8|

forall s, t € [0, T], where G, is a random variable.

@ The trajectories of X are Holder continuous of order ~ forany v < a/p.
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Brownian motion

A stochastic process B = {B;, t > 0} is called a Brownian motion if :
i) Bo = 0 almost surely.

ii) Independent increments :Forall0 < t; < --- < t, the increments
B, - B _,,...,B, — By, are independent random variables.

i) If 0 < s < t, the increment B; — B has the normal distribution
N(O, t — s).
iv) With probability one, t — B;(w) is continuous.
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Proposition
Properties i), ii), iii) are equivalent to :

(x) B is a Gaussian process with mean zero and covariance

r(s,t) = min(s, t).
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Proposition
Properties i), ii), iii) are equivalent to :

(x) B is a Gaussian process with mean zero and covariance

r(s,t) = min(s, t).

Proof :

a) Suppose i), i) and iii). The distribution of (B, ..., B;,), for
0< t <--- <ty is normal, because this vector is a linear
transformation of (B, B, — By, ..., B, — B;,_,) which has independent
and normal components.

The mean is zero, and for s < t, the covariance is

E(BsBr) = E(Bs(B: — Bs + Bs)) = E(Bs(B; — Bs)) + E(B) = s.

b) The converse is also easy to show. [J
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Construction of the Brownian motion

1. The function I'(s, t) = min(s, t) is symmetric and nonnegative definite
because it can be written as

min(s, t)z/o 110,5(MN1j0,4(r)ar,

SO

n n o
> aigmin(t,f) = Zaiaj/o 110,47(r) 110,47 (r)dr

ij=1 ij=1

o n 2
/ [Z a,-1[0,t,](r)] dr > 0.
0 Li=t

Therefore, by Kolmogorov’s extension theorem there exists a Gaussian
process B with zero mean and covariance function min(s, t).
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2. The process B satisfies

_ (2K)!
T 2kkl

for any k > 1, because the distribution of B; — Bs is N(0,t — s).

E [(B,— BS)ZK} (t—s)k, s<t

3. Therefore, by the Kolmogorov’s continuity theorem, there exist a version
B of B, such that B has Holder continuous trajectories of order ~ for any
v < £ on any interval [0, T]. This implies that the paths are y-Holder

on [0, T] for any v < 1 and for any T > 0.
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Brownian motion and random walk

@ Let {&,1 < k < n} be independent and identically distributed random
variables with zero mean and variance one.

@ Define S,(0) =0,

s,,(knT):ﬁW, k=1....n

and extend Sy(f) to t € [0, T] by linear interpolation.

@ Donsker Invariance Principle : The law of the random walk S, on
C([0, T]) converges to the Wiener measure, which is the law of the
Brownian motion. That is, that for any continuous and bounded function
v :C([0,T]) =R,
E(¢(Sn)) =3 E(¢(B)),
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Simulations of Brownian motion
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Basic properties

1. Selfsimilarity :
For any a > 0, the process {a*%Bat, t > 0} is also a Brownian motion.
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2. Forany h > 0, the process {B:., — Bp,t > 0} is a Brownian motion.

3. The process {—B;,t > 0} is a Brownian motion.

0, t=0

is a Brownian motion.
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Quadratic variation

Fix a time interval [0, {] and consider a partition

r={0=fh<bh< - <t =t}

Define Aty = tx — tk—1, ABx = By, — By, _, and || = maXi<k<p Alk.

Proposition

The following convergence holds in L2 :

n
. 2
Jim k§:1: (AB)? =1t.

@ We can say that (AB;)? ~ At
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Proof : Set ¢k = (ABx)? — Aty. The random variables &4 are independent and
centered. Thus,

E [(; (ABy)? — t> 2]

E [(éfkﬂ —an;E[sﬂ

> [3 (At)? — 2 (Ak)? + (Atkﬂ
k=1

n
|| —0

= 2y (AP <2tlr] T 0. O
k=1
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Proof : Set ¢k = (ABx)? — Aty. The random variables &4 are independent and
centered. Thus,

E [(; (ABy)? — t> 2]

] o

= " [3(an) -~ 2(a0) + (At
k=1

n
|| —0

= 2y (AP <2tlr] T 0. O
k=1

Exercise : Using the Borel-Cantelli lemma, show that if {#"} is a sequence of
partitions of [0, {] such that 3", |7"| < oo, then > _, (ABy)? converges
almost surely to t.
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Infinite total variation

@ Define N
Vi =sup > |ABy|
T k=1
@ Then,
P(Vi=o0)=1.

In fact, using the continuity of the trajectories of the Brownian motion, we
have, on the set V < oo,

n
>~ (ABY)* < sup|ABy (ZABM) < Vsup|aB( "0

k=1 k=1

Then, V < oo contradicts the fact that > _, (ABg)? converges in 2 to t
as || — 0.
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Martingales

@ We assume that {F;,t > 0} is an increasing family of o-fields, contained
in F (filtration).

Definition
An adapted process M = {M;, t > 0} is called a martingale with respect to F;
if

(i) Forallt>0, E(|M;]) < oo.

(i) Foreach s < t, E(Mi|Fs) = Ms.
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Martingales

@ We assume that {F;,t > 0} is an increasing family of o-fields, contained
in F (filtration).

Definition
An adapted process M = {M;, t > 0} is called a martingale with respect to F;
if

(i) Forallt>0, E(|M;]) < oo.

(i) Foreach s < t, E(Mi|Fs) = Ms.

@ Property (ii) can also be written as :

E(M[ - Ms‘fs) - 0.
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Examples :

Let B; be a Brownian motion and let F; be the filtration generated by B:; :
Fi = O'{BS,O <s< t}

Then, the processes

MY = B,
MP) = B2 —t

2
M = ootats - %)

where a € R, are martingales.
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1. B;is a martingale because
E(B; — Bs|Fs) = E(B; — Bs) = 0.
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1. B;is a martingale because
E(B; — Bs|Fs) = E(B; — Bs) = 0.

2. For B? — t, we can write, using the properties of the conditional

expectation, for s < t

E(B|Fs) =
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1. B;is a martingale because
E(B; — Bs|Fs) = E(B; — Bs) = 0.

2. For B? — t, we can write, using the properties of the conditional
expectation, for s < t

E(B}|Fs) = E((Bi— Bs+ Bs)|Fs)
= E((B; — Bs )?|Fs) + 2E((B; — Bs ) Bs| Fs)
+E(B3|Fs)
= E(Bi— Bs)?+2BsE((B;— Bs )| Fs) + B?
= t-s+B.

3. Finally, for exp(aB; — %) we have

2
E(e®%|F) = e®B:E(edB-B)-%|x,)

2
- s E(ea(B,—Bs)—T’)

= eaBSeaz(r{S 7z — g%
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Doob’s maximal inequalities

Theorem

Let {M;,t € [0, T]} be a continuous martingale such that E(|Mr|P) < oo for
some p > 1. Then, for all X > 0 we have

1
Pl sup M >X\]| < —E(|MrP). (1)
0<t<T AP
Ifp>1, then
p
E( sup mp) < (525) EQMrP) @
0<ti<T p—1
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The Wiener integral

@ The integral of a step function ¢; = Zj”;’(,‘ aj1(.1,,1(t) € € with respect to

Gi1]
a Brownian motion B on [0, T] is defined by j
T m—1
/ pidBr =) &(By,, — By)
0 :
j=0
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The Wiener integral

@ The integral of a step function ¢; = 21261 aj1(.1,,1(t) € € with respect to
a Brownian motion B on [0, T] is defined by

T m—1
/ ptdBr = a(By,, — By)

0 i

@ The mapping ¢ — foT ¢1dB; from £ C L2([0, T]) to L3(Q) is linear and
isometric :
T m—1 T
E (/o </9td31> =Y &t —t) = /0 pfdt = [l ell2 0, 7))-
j=0
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The Wiener integral

@ The integral of a step function ¢; = Zj”;’(,‘ aj1(.1,,1(t) € € with respect to
a Brownian motion B on [0, T] is defined by

m—1

-
/ ¢tdBr =Y a(By,, — By)
0

/=0

@ The mapping ¢ — foT ¢1dB; from £ C L2([0, T]) to L3(Q) is linear and
isometric :

T m-1 T
E (/o </9td31> &(t1— b)) = /0 pfdt = [l ell2 0, 7))-

j=0
@ & is a dense subspace of L2([0, T]). Therefore, the mapping
¢ — B(p) = /OrsordBr
can be extended to a linear isometry between L2([0, T]) and the

Gaussian subspace of L2(Q2) spanned by {B;, t € [0, T]}.
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Progressively measurable processes

Let F; be the o-field generated by the random variables {B;s,0 < s < t} and
the sets of probability zero.

Definition

We say that u = {u;, t € [0, T|} is progressively measurable if for any
t € [0, T], the restriction of uto Q x [0, t] is F; x B([0, t])-measurable.
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Progressively measurable processes

Let F; be the o-field generated by the random variables {B;s,0 < s < t} and
the sets of probability zero.

Definition

We say that u = {u;, t € [0, T|} is progressively measurable if for any
t € [0, T], the restriction of uto Q x [0, t] is F; x B([0, t])-measurable.

@ Let P be the o-field of sets A C Q x [0, T] such that 14 is progressively
measurable.

@ We denote by L2(P) the Hilbert space L2(Q2 x [0, T], P, P x £), where £ is
the Lebesgue measure, equipped with the norm

)
Ul = E (/0 u§ds> .
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Stochastic integrals

@ u={u;,tel0,T]}is asimple process if

n—1
=Y o1 (5.4,(D);
j=0

where 0 <t <t <..- < t, =T and ¢; are F;-measurable random
variables such that E(¢?) < oc.
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Stochastic integrals

@ u={u;,tel0,T]}is asimple process if
n—1
=Y o1 (5.4,(D);
j=0

where 0 <t <t <..- < t, =T and ¢; are F;-measurable random
variables such that E(¢?) < oc.

@ We define the stochastic integral of u as

T n—1
I(u) ::/0 udB = ¢ (By,, — By).

j=0
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Properties of the stochastic integral of simple processes

() Linearity :

T T T
/ (aUt + bV[) aB; = a/ uydB; + b/ v:dBs.
0 0 0

(i) Zero mean :

T
E </ UtdBt> =0
0

In fact,

T n—1
E(/o UtdBt> = ZE ¢; (By,, — By)]
j=0

n—1

j=0
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(iii) Isometry property :

()]l )
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(iii) Isometry property :

()]l )

Proof : Set AB; = By,, — B;. Then

0 if i)
EOABAR) =\ £ () (40 1) i =]

because if i < j the random variables ¢;¢;AB; and AB; are independent and if
i = j the random variables ¢? and (AB))? are independent. So, we obtain

T 2 n—1 n—1
E [( /0 u,dB,) ] > E(¢iABAB) =Y E (¢7) (i1 — 1)

ij=0 i=0

.
= E(/ u?dt). 0
0
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Proposition
The space &£ of simple processes is dense in L2T(77). J
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Proposition
The space & of simple processes is dense in L2T(77).

Proof :
Use the approximating sequence

n—1 t;
n /)
4= ( 7] “Sds> gt

b1
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Proposition
The stochastic integral can be extended to a linear isometry :

I: L2(P) — L3(Q).

Proof : This follows form the fact that £ is dense in L2(P). O0.
@ The stochastic integral has the following properties :
E[(u)] =0

and

E[l(wl(v)]=E (/OOO usvsds> .
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Example

/ B:dB; = T

Proof : The process B; being continuous in mean square, we can choose as
approximating sequence

n
= Z By 1651012
=

= 1T, and we obtain

/OB,dBt = n&mm239_1 (B, - By_,)
j=1

where tj =

n n

1 2
= Sim (B -8,) -5 im > (85, )
j=1 j=1
_ 1, 1
= 257— 2T.
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Indefinite stochastic integrals

For u € L2(P), we define the stochastic process

t T
/ UsdBs = / U51[07t](3)st N S [0, T]
0 0

Proposition

Let u € L2(P). The indefinite stochastic integral

t
Mt = / Usst
0

is a square integrable martingale with respect to the filtration F; and admits a
continuous version.

.
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[t0’s formula

@ [t0’s stochastic integral does not follow the chain rule of classical
calculus.

@ Example :

/ t B;dBs = 182 !
0 S S — 2 t 2a
whereas if x; is a differentiable function such that xo = 0,

t t
1
/ Xs0Xs :/ XsXids = ~x2.
0 0 2

d(B?) = 2B,dB; + dt,

and dt comes from (dB;)? ~ dt and the Taylor expansion up to the
second order.

@ [n differential form
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@ The stochastic integral can be extended (using convergence in
probability) to progressively measurable processes satisfying

u2ds < oo a.s. Denote the class of those processes by L2, _(P).
0 T,loc

@ Denote by LT 1oc(P) the space of progressively measurable processes
v ={w,t € [0, T]} such that for fOT |vs| ds < oo a.s.

Theorem (It6’s formula)
Suppose that

t t
Xt = XO + / Usst + / Vst,
0 0

where u € L% ,,.(P) and v € L} ,.(P). Let f € C'2. Then,

Lof tof
Y, = f(O,X0)+/ a(s,xs)ds+/ 8—(S,Xs)usst
0

Lof L o?f

+ N — (s, Xs)vsds+ | ox —— (s, Xs)u5ds.
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@ In differential notation 1t0’s formula can be written as

of of 1 0°f

df(t, X;) = m(t Xp)dt + — o (t, Xp)dX; + = 5 x (S

where (dX;)? is computed from
aX; = uydB; + vidt,

using the product rule

X dB; | dt
dB: | dt |0
dt |0 0
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Multiple stochastic integrals

@ [2([0, T]") is the space of symmetric square integrable functions
f:[0,7T]" = R.
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Multiple stochastic integrals

@ [2([0, T]") is the space of symmetric square integrable functions
f:[0,7T]" = R.

@ Forany f € L2([0, T]™)

||f||L2 ([0, 7] = n'/ f th)dty - - - dip,

where
Ap={(t,....t)) €0, T]":0<ty < - < t, < T}
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Multiple stochastic integrals

@ [2([0, T]") is the space of symmetric square integrable functions
f:[0,7T]" = R.

@ Forany f € L2([0, T]™)

||f||L2 ([0, 7] = n'/ f th)dty - - - dip,

where
Ap={(t,....t)) €0, T]":0<ty < - < t, < T}

@ If f: [0, T]" — R we define its symmetrization as

f(t17"'7 n'zf ""U(n)

where the sum runs over all permutations ¢ of {1,2,...,n}.
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@ The multiple stochastic integral of f € L2([0, T]") is defined as an
iterated It6 integral :

tn b
—n'/ / ft1,...,tn)dBt1"'dBtn.
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@ The multiple stochastic integral of f € L2([0, T]") is defined as an
iterated It6 integral :

tn b
—n'/ / ft1,...,tn)dBt1"'dBtn.

@ We have the following property :

if n#£m

0
El[lh(f)Im(9)] = {n!(f, Q>L2([0,T]") if n=m.
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@ The multiple stochastic integral of f € L2([0, T]") is defined as an
iterated It6 integral :

tn b
—nl/ / ft1,...,tn)dBt1"'dBtn.

@ We have the following property :

if n#£m

0
El[lh(f)Im(9)] = {n!(f, Q>L2([0,T]") if n=m.

e If f € L2([0, T]") is not necessarily symmetric we define

In(f) = In(f)-
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@ The nth Hermite polynomial is defined by ho(x) = 1 and

n
hn(x) = (—1)"exz/2%(e-xz/2), n>1.
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@ The nth Hermite polynomial is defined by ho(x) = 1 and

n
hn(x) = (—1)”ex2/2%(e‘xz/2), n>1.

@ Elementary properties :

(x) = nha ()

hni1(X) = xhp(x) — h,(x) = xhp(Xx) — nhy_1(x).
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@ The nth Hermite polynomial is defined by ho(x) = 1 and

n
hn(x) = (—1)”ex2/2%(e‘xz/2), n>1.

@ Elementary properties :

Hy(x) = nhys(x)
hni1(X) = xhp(x) — h,(x) = xhp(Xx) — nhy_1(x).

@ The first Hermite poynomials are hy(x) = x, ho(x) = X2 — 1,
hs(x) = x3 - 3x, ....
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@ The nth Hermite polynomial is defined by ho(x) = 1 and

n
hn(x) = (—1)”ex2/2%(e‘xz/2), n>1.

@ Elementary properties :

Hy(x) = nhys(x)
hni1(X) = xhp(x) — h,(x) = xhp(Xx) — nhy_1(x).

@ The first Hermite poynomials are hy(x) = x, ho(x) = X2 — 1,
hs(x) = x3 - 3x, ....

@ Forany ae R,
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Theorem

For any g € L2([0, T]) such that ||g| 20,1y = 1, we have

=
In(g®") = hy (/0 gtdBt>

where g®"(t;,...,t,) = g(t1) - - g(tn).
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Theorem
For any g € L2([0, T]) such that ||g|| 20,7y = 1, we have

=
In(g®") = hy (/0 gtdBt>

) =g(t) - g(tn)-

where g®"(t, ..

Proof :
(i) Fix a € R and set

t t
M; = exp a/ gsst—laZ/ g2ds | .
0 2 0

One one hand, we have

)
My — e8I 0:dBmid _ thn (/ g,dBf>.
! 0

n=0
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(i) On the other hand, using It6’s formula, we obtain
T
Mr = 1 +/ aM;gsdBs
0
T s
= 1—|—a/1(g)+32/ gs/ MvgvdBv
0 0

T s T s
= 1+4+ah(g)+ 32/ gs/ g,adB, + 33/ gs/ M, g,dB,
0 0 0 0

oo
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Product formula

Let f € L2(]0, T]"), and g € L2([0, T]™). Forany r = 0,...,n A m, we define
the contraction of f and g of order r to be the element of L2([0, T]"*M~2")
defined by

(f®l’g)(t17"'7tl7—l'as17--~7sm—l’)

/ f(t17...,tnfr,x1,...,Xr)g(s1,.‘.,Sm7r7X1,...,Xr)dx1 "'er.
(0.7
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Product formula

Let f € L2(]0, T]"), and g € L2([0, T]™). Forany r = 0,...,n A m, we define
the contraction of f and g of order r to be the element of L2([0, T]"*M~2")
defined by

(f®l’g)(t17"'7tl7—l'as17--~7sm—l’)

/ f(t17...,tnfr,x1,...,Xr)g(s1,.‘.,Sm7r7X1,...,Xr)dx1 "'er.
(0.7

@ We denote by f®,g the symmetrization of f ®, g.

@ Product of two multiple stochastic integrals

nAm

(@)= 31 (7) (7 et ).

r=0
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Wiener Chaos expansion

Theorem

F € L2(Q) can be uniquely expanded into a sum of multiple stochastic
integrals :

F=EF1+ Y (o).

n=1
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Wiener Chaos expansion

Theorem

F € L2(Q) can be uniquely expanded into a sum of multiple stochastic
integrals :

F=EF1+ Y (o).

n=1

@ For any n > 1 we denote by H, the closed subspace of L2(2) formed by
all multiple stochastic integrals of order n. For n = 0, H, is the space of
constants. Then, we have the orthogonal decomposition

L3(Q) = ®2oHn.

@ The theorem follows from the fact that if a random variable G € L2(Q) is
orthogonal to @72 ,Hn, then it is orthogonal to all random variables of the
form (([OT gtth)k, where g € L2([0, T]), k > 0. This implies that G is
orthogonal to all the exponentials exp (fOT g,dW,), which form a total set
in L2(Q). So G=0.
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Integral representation theorem

Theorem

Given F € L2(Q, Fr, P) there exists a unique process u in the space L%(P)
such that

.
F = E[F] + / u,dB;.
0

Example : F = B3. By Itd’s formula and integrating by parts

T T T T
B / SB?dBt+3/ B,dt:/ 3B2dB; + 3 (TBT —/ tdBt)
0 0 0 0

T T
/ SB?dBt+3/ (T — t)dB,
0 0

/T3[B,2+(T—t)] dB,.
0
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Proof :

We know that

FEFI+ S ().
n=0

Then, it suffices to write, for each n > 1,

In(fn) = n! /T Un(t)dB,
0

th—1 t
// [ At bt )aBy o dB

and take uy = Y2 un(t). O

where
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